More Reports About the Toyota bZ4X’s Charging Speed and Range Are In From Norway

The results of the latest tests are surprising, to say the least. The European-spec AWD variant of the bZ4X/Solterra appears to charge fast — much faster than the American one. However, its range disappoints.

Toyota bZ4X. Photo taken in the United States. Photo: Gold Pony

This month, some interesting tests of the all-electric Toyota bZ4X appeared in the Norwegian media. One of them was published by Motor.no. They had driven the bZ4X before, during a media event in Copenhagen in June — and rated it 77/100, not a bad result — but now they got to test it in Norway.

The Japanese SUV did not have the easiest start. In late April, there were
reports from the U.S. about slow charging times. On top of that, there was an announcement, by Toyota, that charging might slow down significantly in below-freezing temperatures. In both cases, it was the U.S. specification AWD variant that was causing trouble.

Then came the much-publicized wheel bolts issue, and a stop-sale order. Because of this delay, these Norwegian tests are not done in the middle of the Norwegian summer; they are done in November.

It looks like bad news for Toyota: their EV is getting tested in temperatures it seemingly does not like — and might not make a good first impression in one of the world’s most important EV markets. And first impressions are important.

Well, the vehicle’s range in cold temperatures is a disappointment, at least when compared to the official figures. In this respect, Motor.no’s results are not that different from those reported by Elbil24, which did a full range test and criticized Toyota not just for the low range of their vehicle, but also for — among other things — not being straightforward about its battery capacity. Elbil24 says the net capacity is 60-62 kWh.

The charging speeds, on the other hand, seem to be solid. Sure, not as good as those offered by some of the Korean competitors, but still not bad for an electric vehicle debuting in 2022.

So, exactly how fast does it charge?

This time, two vehicles were tested by motor.no: the AWD variant of the Toyota and the AWD variant (the only variant) of its Subaru twin. Both of them European-spec.

The U.S.-spec AWD variant is supposed to charge at 100 kW tops. But in the Norwegian test, both vehicles reported peak charging speeds above 100 kW.

Probably because of a different cell supplier. In the United States, the AWD and FWD variants differ in battery capacity — and in the AWD variant, the cells come from the Chinese company CATL, not from Panasonic. In Europe, the official battery capacity is the same in AWD and FWD variants, and presumably both of them use cells from the same supplier, Panasonic.

November temperatures didn’t necessarily work against the Toyota when it comes to charging speeds. First, the temperatures during the test were not exactly frigid: 8 to 5 degrees Celsius, that’s 46 to 41 Fahrenheit. And second, charging did not start with a cold battery: both vehicles did a lot of driving (so the battery had plenty of time to warm up) before they were plugged in.

So here are the measured charging times:

• Subaru: 6% to 80% in 38 minutes
• Toyota: 6% to 80% in 36 minutes

Better than the U.S.-spec AWD model — and not much different from the FWD variant.

Trying to estimate the range

Keep in mind that Motor.no didn’t do a true range test.

For that, you would need to charge to 100% and drive until reaching 0%. And Elbil24 did exactly that (driving until the vehicle reported zero range, not until it actually stopped running); the result was 307 km (191 mi) during the first run, 318 km (198 mi) during the second run.

Back to Motor.no’s test. As mentioned, the temperatures during the test were 8 to 5 degrees Celsius (46 to 41 Fahrenheit). HVAC was on and set to 20 °C (68 °F).

Neither of the two vehicles displays the battery state of charge on the dashboard — only the estimated range remaining. If you want to know the state of charge, you need to read it in an app. And here’s the thing: in the case of the Toyota, the app did not work — it could not connect to the vehicle at all, so we don’t know what the battery percentage was at the beginning of the test.

Let’s focus on the Subaru then. The app reported 54% at the beginning of the test. 149 kilometers (93 mi) later, the app reported 6%.

That would indicate a total range of 310 km (192 mi).

But at the same time, the energy consumption displayed on the vehicle’s screen was 248 Wh/km or 399 Wh/mi. That would indicate a total range of 288 km (179 miles) but that’s assuming the usable battery capacity is 71.4 kWh, while Elbil24’s tests indicate that the usable capacity is lower.

Maybe the energy consumption displayed on the screen is simply wrong.

No matter whether the actual range in such conditions is 310 km (192 mi) or less than that, it is kind of low. Even on 20-inch wheels and winter tires — and that’s what the test vehicle was equipped with — the Solterra’s range should be 416 km (258 mi), according to Subaru (WLTP cycle, and not taking cold weather into account).

And was the vehicle’s low range caused by cabin heating being on? The vehicle’s range estimator wants you to think so — the estimated range dropped a lot (quite a lot, and it wasn’t freezing outside) the moment HVAC was turned on. But no complete range test was done with HVAC off — so at the moment it’s impossible to tell whether the range with HVAC off would be as good as the range estimator indicated.

And to complicate things further…

The results obtained for the Toyota are clouding the picture even more. As a reminder, the battery state of charge could not be read — we’re going on energy consumption readouts only.

The Toyota (AWD and on winter tires) was equipped with 18-inch wheels. That should have resulted in lower energy consumption than in the Subaru.

Nope.

The Toyota was even more power hungry than the Subaru, at 272 Wh/km or 438 Wh/mi. At least that’s what was displayed on the vehicle’s screen. One detail that might matter, the Toyota apparently spent more time driving on the highway (in the final phase of the test or overall?) than the Subaru, and its battery got warmer. But it’s a Norwegian highway, with low speed limits anyway.

But then the Toyota was retested. Different, and longer, route. HVAC set to a temperature almost the same as before. This time, the outside temperature was somewhere between 11 and 14 °C (52–57 °F). The reported energy consumption was 190 Wh/km or 306 Wh/mi. Much lower than before.

A lot of data, and hard to reach any definitive conclusions. More study recommended.
___

Sources: [1][2]

This article has been edited since first published.

Electric Vehicles Did Catch On

A very rough estimate, based on incomplete data, is that some 10% of cars and light trucks sold on this planet last quarter were pure electric vehicles.

Tesla Model Y. Photo taken in California. Credit: Juan Carlos LTO

In 2019 Australian prime minister Scott Morrison famously proclaimed that his political opponent wants to “end the weekend”.

It was said shortly before elections, and in the context of the rival’s policy on electric vehicles.

Morrison emphasized how Australians love 4WD vehicles and SUVs, and said how his opponent wants to deprive Australians of the possibility of buying such vehicles, and make them buy electric cars instead, and an entry-level electric car is “not going to tow your trailer […] not going to tow your boat […] not going to get you out to your favourite camping spot with your family”.

“Bill Shorten (then-leader of the opposing party) wants to end the weekend when it comes to his policy on electric vehicles where you’ve got Australians who love being out there in their four-wheel drives. He wants to say see you later to the SUV when it comes to the choices of Australians.”

By the way, Morrison’s party won those elections.

The situation right now

Well, now that it’s 2022, it’s much more difficult to treat SUVs and electric vehicles as two non-overlapping kingdoms. Especially when the Tesla Model Y (an SUV… at least nominally) is on track to become the best-selling EV of the year worldwide.

And when it comes to pickup trucks (the Australian term is utes), which usually have more off-road genes than SUVs — Rivian and Ford, and not only them, have already started shipping all-electric ones.

Also, it’s more and more difficult to treat electric vehicles as some novel idea that maybe will catch on.

If the global market share of battery electric vehicles (BEVs) among light vehicles was really anywhere around 10% last quarter (that’s excluding plug-in hybrids, which are usually included in statistics for EVs), then we’re already past the so-called “EV tipping point” that analysts once predicted to be at 5%.

That future in which electric vehicles are supposed to become popular? We are already living in it.

Not just for fans

The catchphrase about “ruining the weekend” (that seems to be the more popular version), used ironically, apparently became a favorite among EV fans in Australia.

Just to quote an article on thedriven.io about a Facebook group titled (of course) I ruined the weekend:

Photo: Sam Blight

Sam Blight took a casual drive and ruined a whole afternoon in his Kona Electric: “Afternoon ruin out to Yennyenning Lakes which are full this year after good rain.”

Ant Day, who started the group, took a 1,500km [930-mile] trip to Esperance, ruining a three-day weekend with a visit to Edge of the Bay festival and along the way was horrified by some lovely wildflowers, then visiting some very nice beaches.

And a lot has changed since 2019, when Australian buyers looking for an EV didn’t have that many options to choose from. The Model Y is quite popular now (isn’t it boring how that model appears in almost every EV ranking, no matter which country you pick?), taking on the Mazda CX-5 and the Toyota RAV4.

What’s important is that electric vehicles are no longer just an option for people who specifically want an EV. They are an appealing option for car, or SUV, buyers in general. What was that expression the British Top Gear magazine used when reviewing the Megane E-Tech? Conventionally desirable. You don’t need to be an EV fan to buy an EV.

What is the market share? Well, in the third quarter of 2022, some 4.4% of all vehicles sold in Australia were all-electric. If you want to cherry-pick, September was an especially good month for all-electrics, with a 7.7% market share. The overwhelming majority of these sales are Teslas.

The lack of all-electric utes (all-electric pickup trucks) in the Australian market remains a problem, though. Another example of how Australia is at the back end of the queue when it comes to debuts of new EV models is the Volkswagen ID.4: not exactly a new model in Europe or the U.S., but not available in Australia yet.

Quietly electric

There are so many countries where the BEV market is booming right now. China is driving the global figures up: from July through September, more than 21% of passenger vehicle sales in the country were all-electric.

But I’m going to write about the Korean market, and a certain Korean brand, instead.

In September, pure electric vehicles outsold hybrids in South Korea — for the first time. That moment came surprisingly late, given that South Korea is a powerhouse when it comes to manufacturing EVs and their batteries. But a lot of EVs made in South Korea are exported. And exports of the Kia EV6 and the Ioniq 5 — especially the Ioniq 5 — to Europe are still not keeping up with the demand.

Hyundai-Kia’s big selling point is a battery pack that charges from 10% to 80% in just 18 minutes; it’s already used in vehicles sold in Europe and in North America. But a certain SUV using that technology has been reserved for the Korean market so far.

Genesis Electrified GV70. Photo: Damian B Oh

Remember when Korean cars and SUVs were cheap? I do (and I remember how the German automotive press hated them for it). Today, offering affordable vehicles is considered a terrible mistake, one that more and more manufacturers are trying to avoid. The Genesis Electrified GV70 is not cheap. Marketed under Hyundai-Kia’s premium brand, that SUV has no twin model that would be sold under some cheaper brand.

So far it has only been sold in Korea — but that’s going to change soon. Deliveries in Europe are expected to start just about now. Additionally, a factory in Alabama is expected to start delivering vehicles for the American market.

The Electrified GV70 does not look that different from its combustion-engine counterpart. The same can be said about the Genesis Electrified G80, an ostentatious, presidential-looking sedan.

Unlike Teslas, these vehicles are clearly downplaying their all-electric nature. They are luxury vehicles that just happen to be electric.

Japan’s tiny EV

Things might be changing — slowly — even in Japan, a country known for a low market share of all-electrics (ordinary hybrids are super popular, though).

The Nissan Sakura, introduced this year, is an electric kei car equipped with a 20-kWh battery. Certainly not a long-range electric vehicle.

Photo: Hideyuki Nakano, response.jp

But Nissan’s car that is turning out to be kind of popular in Japan. Together with its Mitsubishi eK X EV twin, it sold in over 13,000 units last quarter, and held a 1.6% share of the market. That’s not the share of the BEV market; it’s the share of the entire passenger vehicle market.

Overall, all-electric vehicles are just 2–3% of the passenger vehicle market in Japan — so Nissan/Mitsubishi’s tiny EVs must account for the majority of those sales.

It’s quite affordable for an EV. And — of course — it’s not available in Europe. There is a risk it would be selling too well.

The numbers

China: 1,215,155*
European Union, EFTA and UK: 355,000*
United States: 205,682
South Korea: 49,631**
Japan: 21,100*
India: 13,054**
Australia: 12,047**
* not including light commercial vehicles
** might include heavy commercial vehicles

The estimate for the global market of light vehicles (all kinds of powertrains) is 19,274,000 units.
All data is for Q3 2022.
___

Sources: China[1][2][3][4][5][6], European Union, EFTA and UK[7][8][9][10][11], United States[12], South Korea[13][14], Japan[15][16][17], India[18], Australia[19][20][21][22], estimates for the global light vehicle market[23].